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Written by Srivatsa Kundurthy & Alex Kozik, based on Cornell CS 4782 Lecture on Diffusion

Models Part II.

Recap: Generative Models

What should be clear at this point is that generative modeling is a fundamentally challenging task.
Generative Adversarial Networks (GANs) train a generator to synthesize data that fools a

discriminator trained to distinguish between real and fake samples. This adversarial setup has
led to remarkable sample quality, especially in high-resolution image generation. However, GANs
come with their own challenges: mode collapse, unstable training, and the lack of an explicit density
model make them difficult to train and evaluate probabilistically.

With Variational Autoencoders (VAEs), we approached this challenge as an encoder-decoder
problem: mapping an input x to a latent representation z = qϕ(x) using a learned encoder, and
then reconstructing the input via x ≈ pθ(z). While VAEs offer fast inference, they often struggle
with generating high-quality, detailed samples.

So we’re left with a tradeoff:

• VAEs: stable training, but blurry generations.

• GANs: sharp images, but unstable and non-probabilistic.

However, both are lightning fast. Perhaps this is part of the issue. For example, for the VAE,
the one-shot nature of both encoding and decoding makes it so that we have to compress the input
into a latent space in a single step and attempt to reconstruct it just as quickly. This abruptness
can limit its expressivity.

So what if we slowed things down? What if we transformed data into noise—and noise back
into data—gradually?

This is the key intuition behind diffusion models, which were introduced in the previous lecture.

Recap: Denoising Diffusion Models

The diffusion models we study consist of two parts, a forward diffusion process and a reverse
denoising process.

• The forward diffusion process gradually adds noise to the input.

• The reverse denoising process learns to undo the noise at each step to reconstruct data.

Each process occurs over several time steps.

Forward Process

The forward process q defines a Markov chain that adds Gaussian noise to the original data x0 over
T steps to get increasingly noisy versions x1, x2, . . . , xT , until such a point that xT ≈ N (0, I).

While we can iteratively add noise ϵ ∼ N (0, I) to each xt, it is advantageous to imagine a closed
form. That is:

q(xt | x0) = N
(√

ᾱt x0, (1− ᾱt)I
)

We can compute this as
xt =

√
ᾱt x0 + (1− ᾱt) ϵ, ϵ ∼ N (0, I)

where ᾱt =
∏t

s=1 αs, with αt ∈ (0, 1) defines the noise schedule.

1



Noise Schedules

In diffusion models, noise schedules determine how much Gaussian noise is added to a clean data
point (i.e. image) at each step of the forward diffusion process.

In doing so, the noise schedule defines how quickly or slowly this corruption happens.
A popular noise schedule is the cosine schedule, defined as

ᾱt = cos2
(
0.5π t/T

)
Reverse Process

The forward process adds noise step-by-step to get xT . It destroys the original image x0. To be
able to generate new data, we need to build a model that reconstructs data starting from pure
noise.

The reverse process does exactly this: it learns to denoise from xT to x0 using a learned
generative model.

We model the reverse process as a Markov chain of Gaussians.
Final timestep distribution:

p(xT ) = N (xT ; 0, I)

This serves as the starting point for generation. Now, we want our model to learn to denoise
each timestep, until we are back at a good reconstruction of the original input data x0. Formally,
this idea is captured by

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t), σ

2
t I
)

where

• The mean µθ(xt, t) is predicted by a neural network.

• The variance σ2
t is often fixed or learned, depending on the implementation.

In other words, we are learning to model the conditional distribution of a cleaner image given
a noisier one. The full generative model is a chain of these reverse steps:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt)

Of course, the challenge lies in learning pθ, and learning it well.

Diffusion Learning Objective

Our objective is actually quite similar to the VAE. In an ideal world, we’d match the distribution
p(x) from which the data is drawn from. Of course, this is usually not tractable.

Instead, let’s see if we can come up with an Evidence Lower Bound that is tractable. That is,
we want to come up with some lower bound on log p(x) that we can seek to maximize with a model.
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ELBO Derivation

We want the marginal likelihood of our data point x0 given a latent noise sequence x1:T .

log p(x0) = log

∫
p(x0:T ) dx1:T where p(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1 | xt).

Next, we introduce a variational posterior (an identity term here) and recognize the expression
as an expectation over the forward process.

log p(x0) = log

∫
p(x0:T )

q(x1:T | x0)
q(x1:T | x0)

dx1:T = logEq(x1:T |x0)

[
p(x0:T )

q(x1:T |x0)

]
.

Since log is concave, we can apply Jensen’s Inequality

log p(x0) ≥ Eq(x1:T |x0)

[
log p(x0:T )

q(x1:T |x0)

]
≡ L(x0).

Next, we plug in the forward and reverse factors we derived.
p(x0:T ) = p(xT )

∏T
t=1 pθ(xt−1 | xt) for the forward process. and q(x1:T | x0) =

∏T
t=1 q(xt | xt−1)

for the reverse process.
With some algebra, we get

L(x0) = Eq

[
log p(xT ) +

T∑
t=1

log pθ(xt−1 | xt)−
T∑
t=1

log q(xt | xt−1)
]
.

Subsequently, we re-index and collect terms into:

1. Reconstruction term
Eq(x1|x0)

[
log pθ(x0 | x1)

]
.

This term assess to what degree our learned pθ allows us to recover the original data x0.

2. Prior matching term:

−Eq(xT−1|x0)

[
DKL(q(xT | xT−1)∥p(xT ))

]
.

This term assesses our ability to fully destroy the input image (that is, make it so that p(xT ) =
N (0, I)).

3. Consistency/ de-noising matching term:

−
T−1∑
t=1

Eq(xt−1,xt+1|x0)

[
DKL(q(xt | xt−1)∥pθ(xt | xt+1))

]
.

Finally, the last term is the objective we strive to learn. It asks, “for all t up to T , if we start
from x0 and add noise for t steps using the forward process q, to what degree can we recover
xt−1 using our learned reverse model pθ?” In other words, it ensures that each reverse denoising
step matches the corresponding forward noise step.
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log p(x0) ≥ Eq(x1|x0) [log pθ(x0 | x1)]︸ ︷︷ ︸
reconstruction

− Eq(xT−1|x0) [DKL(q(xT | xT−1) ∥ p(xT ))]︸ ︷︷ ︸
prior matching

−
T−1∑
t=1

Eq(xt−1,xt+1|x0) [DKL(q(xt | xt−1) ∥ pθ(xt | xt+1))]︸ ︷︷ ︸
denoising matching term

We take the denoising matching term as our learning objective.
This is the only non-zero, parameterized term in our ELBO. Minimizing it forces the learned

reverse kernels pθ(xt−1 | xt) to match the true posteriors q(xt−1 | xt, x0) at every timestep.
In fact, observe that q(xt−1 | xt, x0) is Gaussian and can be expressed as:

q(xt−1 | xt, x0) = N
(
xt−1; µ̃t(xt, x0), β̃t I

)
,

Recall that we defined the noise-scheduling hyperparameters as

βt : preset variance at step t,

αt := 1− βt,

ᾱt :=
t∏

s=1

αs,

ᾱt−1 :=

t−1∏
s=1

αs,

and can then write the closed-form posterior variance and mean as

β̃t :=
1− ᾱt−1

1− ᾱt
βt,

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I),

µ̃t(xt, x0) :=
1
√
αt

(
xt −

βt√
1− ᾱt

ϵ
)
.

Parameterizing the Denoising Model

Since both
q(xt−1 | xt, x0) and pθ(xt−1 | xt)

are Gaussian, their KL divergence reduces to a simple squared-difference between means:

Lt−1 = DKL

(
q(xt−1 | xt, x0) ∥ pθ(xt−1 | xt)

)
= Eq

[
1

2σ2
t

∥∥µ̃t(xt, x0) − µθ(xt, t)
∥∥2] + C

Here, σ2
t is the (shared) variance of both Gaussians (often set to β̃t). The constant C absorbs all

terms independent of θ.
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Recall from the forward process that we define the noised data at time t by

xt =
√
ᾱt x0 +

√
1− ᾱt ϵ, ϵ ∼ N (0, I),

where

αt = 1− βt, ᾱt =

t∏
s=1

αs.

By Bayes’ rule on two Gaussians, the true posterior q(xt−1 | xt, x0) is also Gaussian with

µ̃t(xt, x0) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵ
)
, β̃t =

1− ᾱt−1

1− ᾱt
βt.

Thus, we can seek to predict this µ̃t. But instead of doing this directly Ho et al. proposed letting
the network predict the noise ϵ instead. That is, training a network that would model

ϵθ(xt, t) ≈ ϵ.

such that we could then model µ̃t as

µθ(xt, t) =
1√

1− βt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)
)
.

Finally, we can substitute this µθ into the KL to obtain a mean-squared error on the noise:

Lt−1 = Ex0∼q(x0), ϵ∼N (0,I)

[
β2
t

2σ2
t (1− βt) (1− ᾱt)

∥∥ϵ − ϵθ(
√
ᾱtx0 +

√
1− ᾱt ϵ︸ ︷︷ ︸

xt

, t)
∥∥2] + C.

In practice, the collected constants are often dropped from the training objective:

Lt−1 = Ex0∼q(x0), ϵ∼N (0,I)

[∥∥ϵ − ϵθ(
√
ᾱtx0 +

√
1− ᾱt ϵ︸ ︷︷ ︸

xt

, t)
∥∥2] + C.

This is actually quite interpretable. We train by taking the mean squared error between the learned
and true noise at each step!

Architecture

Diffusion models typically use a U-Net backbone with ResNet blocks and self-attention to implement
the noise-prediction network ϵθ(xt, t). You may recall the U-Net architecture from our lecture on
Modern Vision Networks.

U-Net Structure

Encoder (down-sampling path)

• Sequential ResNet blocks reduce spatial resolution

• Optionally interleave self-attention at intermediate resolutions to capture long-range dependen-
cies

Bottleneck
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• Lowest resolution features processed by ResNet + attention

Decoder (up-sampling path)

• Mirror of encoder: ResNet blocks + up-sampling (nearest or transpose-convolution)

• Skip-connections from encoder layers inject high-resolution detail. This is a critical features
that enables high quality reconstructions.

The Time Factor

Diffusion models have the consideration of time t that needs to be preserved and represented. For
this, we borrow sinusoidal positional embeddings from the transformer.

Self-Attention

Within the U-Net, we place self-attention layers at one or more resolutions (often in high level
feature maps) to help model global correlations.

The aforementioned architecture is defined in Ho et al. (NeurIPS 2020) , who proposed the
original DDPM U-Net, and Dhariwal & Nichol (NeurIPS 2021), who made crucial improve-
ments.

Training

We are now equipped to discuss the procedure for training a diffusion model. We’ll be using the
“one-step” forward process equation:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

Recall that ᾱt is a product of noise schedule terms and controls how much of the original image
remains vs. how much noise is added and ϵ is sampled from a standard normal distribution (i.e.,
random Gaussian noise).

Training Algorithm (Repeat Until Convergence)

Step 1: Sample clean image
x0 ∼ q(x0)

• Sample a clean image x0 from the training data distribution q.

• This is the starting point of the forward process.

Step 2: Sample time step
t ∼ U{1, 2, . . . , T}

• Choose a random time step t uniformly from all possible time steps 1 to T .

• This ensures the model learns to denoise at every possible stage of the forward process, from
slightly noisy to very noisy.
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Step 3: Sample Gaussian noise
ϵ ∼ N (0, 1)

• Sample Gaussian noise to be added to the image.

• This noise is used in the forward process to get xt using the “one-step” formula and later used
to compute the loss by comparing it to the model’s prediction.

Step 4: Optimizer step on loss As we previously derived, our objective is

L(θ) = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
• The model ϵθ(xt, t) is trained to predict the noise ϵ that was added to get from x0 to xt.

• This is a mean squared error (MSE) loss between the true noise and the predicted noise.

• The optimizer (e.g., Adam) updates the model parameters θ accordingly.

Inference Sampling

During inference time, we seek to generate new data using our trained diffusion model. We start
with pure noise and iteratively denoise it using our ϵθ model to recover a coherent image.

Initialization

We begin with a sample of pure Gaussian noise:

xT ∼ N (0, I)

• This is the most corrupted/noised version of the image — the starting point for sampling.

• Observe that we start at final time step T since inference is done over the reverse process,
attempting to recover some x0.

Iterative Denoising Process

For t = T, T − 1, . . . , 1, repeat:

1. Noise Sampling:
z ∼ N (0, I) if t > 1, else z = 0

Interestingly, at every single time step we apply a fresh noise sample. This may seem odd, but the
reason we do this is to make the generated outputs diverse. If we didn’t do this, the generations
would follow similar trajectories.
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2. Reverse Step:

xt−1 =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz

• ϵθ(xt, t): predicted noise component in xt.

• αt: forward noise schedule coefficient at timestep t, which is pre-determined.

• ᾱt: cumulative product of αs up to timestep t.

• σt: predefined variance schedule controlling how much randomness is added at each step.

Here, the first term is simply subtracting off the predicted noise from the current sample, while
the second term is introducing a small amount of stochasticity by adding a little noise back after
denoising.

3. Output At timestep t = 1, we return x0.

Comparing Generative Models

While diffusion models have excellent mode coverage and very high quality samples, they are quite
slow during execution since we have several steps of denoising, each of which is a full pass through
the learned network.

On the other hand, GANs have quick sampling and high-quality outputs, but suffer from mode
collapse.

And finally, VAEs share quick sampling with GANs and mode coverage with Diffusion models,
but struggle with low-quality outputs.

All three of the generative models we learned make tradeoffs. But as of now, research efforts have
centered around diffusion models because the two qualities that they promise are very desirable,
and we are willing to deal with slow execution.

Alternate Perspective on Diffusion Models: Score-Based Models

Background

We want to model the probability density function as follows:

pθ(x) =
e−fθ(x)

Zθ

Where Zθ > 0 is a normalizing constant such that∫
x
pθ(x) dx = 1

This will allow us to understand the distribution of images x and draw from it.
We want to maximize the log-likelihood of the data, which gives us the following objective:

max
θ

N∑
i=1

log pθ(xi)

Problem: The normalization constant Zθ is intractible, since we usually cannot compute it.
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Solution: We will approximate the score function, which is given as follows:

sθ(x) = ∇x log pθ(x) = −∇xfθ(x)−∇x logZθ = −∇xfθ(x)

Therefore,
sθ(x) = −∇xfθ(x)

Then, we can use gradient ascent to view areas of high density in the PDF and draw from the
distribution.

We train a model sθ that approximates the real score function of the distribution.
Score function:
Let pθ be a probability density function. Then, the score function is defined as

sθ(x) = ∇x log p(x)

• This points in the direction where the probability density increases the fastest.

Score-based models

Langevin dynamics provide a way to sample from a probability distribution, even when it is un-
normalized. The sampling process is defined by the following update rule:

xt+1 ← xi + ϵ∇x log p(x) +
√
2ϵ zi, i ∈ {0, 1, 2, . . . ,K}

In this equation, each xi represents a sample from the target distribution. The parameter ϵ is a
step size that determines how large each update is, effectively controlling the speed of exploration.
The term zi is drawn from a standard Gaussian distribution N (0, 1) and adds randomness to the
updates, which helps prevent the sampler from getting stuck in local modes of the distribution.

Score matching

Score matching is a method used to train models to match the score function of a probability
distribution without needing access to the partition function (normalizing constant), which is often
intractable.

The score function is the gradient of the log-probability with respect to the input:

∇x log p(x)

In score matching, we define a loss function that penalizes the difference between a model’s predicted
score and the true score:

Ex

[
∥sθ(x)−∇x log p(x)∥22

]
However, the true score ∇x log p(x) is unknown, so direct minimization of this loss is not possible.
Fortunately, score matching provides an alternative way to compute this loss without needing the
true score function directly, using integration by parts.

Training

Denoising Score Matching and Training Objective

We begin with the score matching objective:

T∑
t=1

λ(t)Ext

[
∥sθ(xt, t)−∇xt log pt(xt)∥

2
2

]
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This objective tries to learn a score function sθ that approximates the score of the noisy distribution
pt(xt).

Using denoising score matching, we can replace the unknown score with an expression involving
the known conditional qt(xt | x).

T∑
t=1

λ(t)Ext

[
∥sθ(xt, t)−∇xt log qt(xt | x)∥

2
2

]
If

xt ∼ N (x, σ2
t I)

then
qt(xt | x)

Note that xt ∼ N (x, σ2
t I), therefore, qt(xt | x) is Gaussian. Therefore, we have:

∇xt log qt(xt | x) = −
xt − x

σ2
t

Substituting this into the loss gives:

T∑
t=1

λ(t)Ext

[∥∥∥∥sθ(xt, t) + xt − x

σ2
t

∥∥∥∥2
2

]

which is rewritten as:
T∑
t=1

λ(t)Ext

[∥∥∥∥sθ(xt, t)− x− xt
σ2
t

∥∥∥∥2
2

]

Connecting Denoising Score Matching to DDPMs

We know that:

∇xt log q(xt | x) = −
xt − x

σ2
t

Assuming the forward noise process:

xt = x+ σtϵ, ϵ ∼ N (0, I)

We substitute into the gradient:

∇xt log q(xt | x) = −
x+ σtϵ− x

σ2
t

= −σtϵ

σ2
t

= − ϵ

σt

This shows that the score function is:

sθ(xt, t) = −
ϵθ(xt, t)

σt
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Reformulating the Loss

Starting from the denoising score matching loss:

λ(t)Ex,t

[∥∥∥∥sθ(xt, t)− x− xt
σ2
t

∥∥∥∥2
2

]

Substitute the score identity:

sθ(xt, t) = −
ϵθ(xt, t)

σt
,

x− xt
σ2
t

= − ϵ

σt

The loss becomes:

λ(t)Ex,t

[∥∥∥∥ϵθ(xt, t)σt
− ϵ

σt

∥∥∥∥2
2

]
=

λ(t)

σ2
t

Ex,t

[
∥ϵθ(xt, t)− ϵ∥22

]
From this, we see that this loss function is the mean squared error loss used in DDPMs. We train
the model to predict the noise using the ground truth noise as supervision.

So, DDPM training can be interpreted as a special case of denoising score matching when the
corruption distribution is Gaussian.

Conditional Diffusion with Classifier Guidance

An incredibly useful feature of diffusion models is control.
Consider the following scenario: We want to generate images conditioned on a label (e.g., “a

cat”), but we may not have (image, label) pairs to train a conditional diffusion model.
Instead, we do have access to:

• A pretrained unconditional diffusion model pt(xt)

• A classifier p(y | xt) that tells us how likely the label y is given a noisy image xt. This is not
too hard to obtain, but there may be some instabilities.

We want to sample from pt(xt | y), the distribution of images conditioned on label y. We can’t
sample from this directly, but we can guide the sampling using the gradient of the log-probability
(a score function):

∇xt log pt(xt | y)

Using Bayes’ rule, we can decompose this into:

∇xt log pt(xt | y) = ∇xt log pt(xt) +∇xt log pt(y | xt)

Where:

• ∇xt log pt(xt): score function from the unconditional diffusion model.

• ∇xt log pt(y | xt): gradient from the classifier — tells you how to tweak xt to make it more likely
to be classified as label y.

This trick allows us to guide the diffusion process toward samples that are consistent with a given
label y, even without retraining the diffusion model.

11



Classifier-Free Guidance

Traditional classifier guidance requires a separately trained classifier to guide the sampling process
toward a desired condition (e.g., a class label or text prompt). However, training such a classifier on
noisy data is non-trivial and can introduce instability. Classifier-free guidance eliminates this need
by modifying the diffusion model itself to enable both conditional and unconditional behaviors.

Training Procedure

• A single neural network ϵθ is trained to predict noise from a noisy input xt at timestep t.

• The model is trained on both:

– Conditional examples: where conditioning information y (e.g., a class label or text
embedding) is provided.

– Unconditional examples: where the conditioning information is dropped (e.g., replaced
with a null embedding).

• During training, the conditioning input is randomly omitted with a fixed probability (e.g.,
10%–20%) to ensure the model learns to perform both tasks.

• Conditioning can be incorporated via input concatenation or cross-attention mechanisms.

Modified Sampling Distribution

At inference time, the model performs conditional generation by modifying the target distribution
as follows:

log p̃t(xt | y) ∝ log pt(xt | y) + w log pt(y | xt)

This modification results in an adjusted sampling gradient:

∇xt log p̃t(xt | y) = ∇xt log pt(xt) + w (∇xt log pt(xt | y)−∇xt log pt(xt))

Simplifying:
= (1− w)∇xt log pt(xt) + w∇xt log pt(xt | y)

This formulation interpolates between the unconditional and conditional scores, with w ≥ 0 serving
as the guidance scale.

With classifier-free guidance, we can simplify the model architecture and training pipeline, and
avoid the gradient instability and additional computation overhead of classifier guidance. This
method is widely adopted in virtually all text-to-image generators.

Latent Diffusion Models (LDMs)

Latent Diffusion Models (LDMs) are a class of generative models that apply diffusion processes
in a compressed latent space, rather than directly on high-dimensional data such as images. This
yields substantial computational benefits while preserving generative quality.

Traditional diffusion models operate directly on pixel-space data (e.g., 256x256 RGB images),
which leads to high memory and compute requirements due to the dimensionality. Latent Diffusion
Models mitigate this by:

• Encoding images into a lower-dimensional latent space using an autoencoder
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• Applying diffusion in that latent space

• Decoding the denoised latent back into image space

Architecture

LDMs consist of three main components:

1. Autoencoder (Encoder–Decoder Pair)

• Encoder: Compresses an input image x into a latent representation z = E(x).

• Decoder: Reconstructs the image x̃ = D(z)

• The autoencoder is trained with a perceptual and pixel-wise reconstruction loss, ensuring high-
quality reconstructions.

2. Latent Diffusion Model

• A standard diffusion model (e.g., U-Net architecture) is applied in the latent space to learn the
distribution p(z).

• Noise is added to the latent vector over T steps and the model learns to reverse this process.

3. Conditioning Mechanism (for Text-to-Image Tasks)

• Conditioning (e.g., on text prompts) is integrated using cross-attention layers between the latent
diffusion U-Net and a text encoder (e.g., CLIP or OpenCLIP)

• This enables controllable generation from text prompts

4. Discriminator

• In some variants, a discriminator is used during training for adversarial regularization to improve
the sharpness and realism of reconstructions.

Stable Diffusion

Stable Diffusion (by Stability AI, LMU Munich, and Runway) is a prominent implementation of
latent diffusion, designed for text-to-image synthesis. Key design details include:

• Training Dataset: LAION-5B (large-scale dataset of image-text pairs scraped from the web)

• Text Encoder: CLIP ViT-L/14, trained to embed text prompts into conditioning vectors

• Autoencoder:

– Uses a convolutional VAE-like structure

– Latents are typically 1/8 or 1/16 the spatial resolution of the input image

• Latent U-Net: A UNet-based denoising model trained in latent space

• Classifier-Free Guidance: Used during inference to interpolate between conditional and
unconditional predictions for stronger text-image alignment
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Summary

Diffusion models have emerged as a powerful class of generative models, capable of producing high-
quality samples across a variety of domains. These models were introduced from two complementary
perspectives: the variational perspective, which frames diffusion as a latent variable model trained
using variational inference, and the score-based generative modeling perspective, which focuses on
estimating the gradient of the data distribution.

A key strength of diffusion models is their flexibility in conditional generation. They can be
conditioned on various modalities, such as text or images, to produce outputs that align with
a desired specification—enabling applications like text-to-image synthesis, image inpainting, or
super-resolution.

Modern implementations, such as Stable Diffusion, further enhance efficiency by performing
the generative process in the latent space of a pretrained autoencoder. This strategy significantly
reduces computational cost while maintaining high fidelity, making diffusion models practical for
large-scale deployment.

Bonus: Discrete Diffusion

LLaDA (Large Language Diffusion with mAsking) is a diffusion model for language generation,
introduced by Nie et al. (2025).

Generative modeling principle

Key claim: There is nothing inherently better about left-to-right text generation. The key to
scalability is maximizing the likelihood of the training data:

max
θ

Ex∼pdata [log pθ(x)] ⇐⇒ min
θ

KL(pdata(x) ∥ pθ(x))

Autoregressive models factorize the joint probability into product of conditional probabilities.
Discrete diffusion models optimize a lower-bound on likelihood (ELBO).

Challenging the autoregressive framework

Beyond left-to-right text generation: Traditional autoregressive models generate text one
token at a time, predicting the next token based on a left-to-right context using causal attention.
This sequential nature limits flexibility and imposes a strict generation order.

In contrast, discrete diffusion models offer a fundamentally different approach. They allow for
any-order token prediction by employing bi-directional attention and perform generation through
a series of denoising steps—typically TTT steps for the entire sequence—rather than one step per
token.

Noising Text

• The most popular way to noise text is to mask tokens independently at random

• Given a text sequence and t ∈ (0, 1), we can noise it to any intermediate xt

qt|0(x
i
t | xi0) =

{
1− t ; xit = xi0
t ; xit = M
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Since each token is masked independently, we have that

qt|0q(xt | x0) =
L∏
i=1

qt|0(x
i
t | xi0)

Denoising Text

The key idea when denoising text is to optimize the likelihood of the training data. In diffusion
models, we don’t have access to the likelihood. So, instead we optimize the likelihood lower-bound
(ELBO).

Epdata(x0)[log pθ(x0)] ≤ −Et,x0,xt

[
1

t

L∑
i=1

⊮{xit = M} log pθ(xi0 | xt)

]
For masked diffusion models, the ELBO has a very intuitive form:

• Given a partially masked sequence, the model predicts all marked tokens simultaneously

• The ELBO computes the likelihood only on the masked tokens

Generating Text

The key idea is to predict the original text, then add back “noise”.
Given a partially/fully masked sequence xt, we want to generate xs.

1. Run the discrete diffusion model to simultaneously predict all of the masked tokens

2. For each of the masked tokens, remark them with probability s
t .

Repeat this process until you generate x0, the unmasked text.

Implementation Details: Inference

LLaDA applies semi-autoregressive sampling, which works as follows:

1. The sequence is divided into blocks, generated from left-to-right

2. Within each block, apply LLaDA to unmask/generate
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